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Introduction 

In August of 2014, The Transportation Research Board (TRB) Committee on Traffic Flow Theory 

and Characteristics held a symposium celebrating 50 Years of Traffic Flow Theory in the 

Midyear Meeting in Portland, Oregon, USA. The predecessor committee focusing on traffic flow 

theory was organized 50 years ago, to recognize the past accomplishments in the field, 

reflecting on the present state of our research community and identifying key future directions.  

The fact of the matter was that this meeting, like other similar meetings, did not advance the 

science first proposed by Greeshield in 1930’s, and since then a myriad of academics and 

professionals have expounded on his seminal work and offered as many traffic flow theories 

and conjectures. These theories, despite their mathematical elegance are mostly inaccurate, as 

their progenitors had paid no heed to Leibniz’s warning that utilizing his mathematical notation 

always leads to self-consistent but not necessarily accurate results.  

In this book we will not attempt to present any of these theories other than what is needed in 

the minimum for the reader to gain a complete understanding of the traffic flow. 

As far as this author is concerned the traffic theory has had three major contributions since 

Greenshield’s original effort. In 1953 Lighthill and Whitman followed by Roberts introduced the 

LWR model without the required extension into the synchronous traffic movement. In 1964 

Newell proposed his model of Fundamental Traffic Diagram without successfully deriving the 

slope of the downward portion of diagram that corresponds to congested traffic. The 

unification of LWR and Newell is the hinge pin of understanding the traffic flow and its 

management as it would be required by the increasing number of vehicles worldwide and the 

inability of the governments to keep up with the construction of the infrastructure required to 

support the number of vehicles being used. 
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Traffic Flow Theory 

The most important concept in traffic flow is that of density. The vehicular density is measured 

in number of vehicles per mile, but in actual engineering practice one does not need to count 

the number of vehicles in one mile, the distance between two consecutive vehicles suffices to 

determine density. 

� =
5280
� + 	

 

The above equation simply describes the number of vehicle and the distance in front of them 

that fit inside a mile. We represent that as 	� and call it vehicular density – 5280 represent the 

number of feet in one mile, �  is the typical vehicular length and 	 the distance between two 

consecutive vehicles.  

It is important for the reader to realize that in the course of one mile one may encounter 

several pockets of different vehicular densities, for example two consecutive stop lights may 

create two pockets of very high density with scant vehicular density in between, the same may 

be imagined on a roadway where one might encounter vehicles moving in packets of different 

densities. 

Solving for 	 and dividing by the speed � we may arrive at an equation for the time of impact	�, 

if the vehicle ahead would come to sudden stop. 

� =
	
�
=
5280 − ��

��
 

For standard vehicular length of 14.75 ft the Distance versus Density is plotted in Figure 1. 

 

Figure 1 – add text to explain the graphic (if you want) 

Conversely, we may also write an equation for speed in miles per hour 
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� =
5280 − ��

���̅
 

Where � ̅is 
����

����
  the conversion factor from ft/sec to MPH. 

For ordinary traffic situations, the drivers normally abide by the posted speed limit, therefore 

we may presume � to be a constant �� .		 

We may thus calculate the hourly volume flow of vehicles	� as  

� = ��� 

It becomes obvious that the time of impact will become increasingly shorter with the increased 

density until the density reaches a point that the driver chooses to sacrifice the speed in favor 

of a safe time of impact ��	, and we may say that at that point we have reached a critical 

density ��.  Careful measurements of �� in various regions have shown that �� varies from 

region to region but it is regionally stable. In southern California �� is measured to be 1.75 

seconds and in Seoul, Korea it is measured at 2.5 seconds. The speed required to maintain a 

safe time of impact is then: 

� =
5280 − ��

����̅
 

We may compute ��  from the intersection of the line 

� = ���	
with   

� = �� = 	�
5280 − ��

����̅
 

Solving for � we get an expression for	��  

�� =
5280

� + �����̅
 

This derivation is universal and applies to vehicular traffic (cars, bicycles, etc.) or even 

pedestrians and movement of ants. The results of a wonderful graphic experiment can be found 

at (http://tft.ceng.calpoly.edu/tft50/tft50_papers/P08_Seyfried.pdf).  

As such ��  becomes a dividing point to bifurcate the traffic flow into two regions of free flow 

and synchronized flow, a plot of which is presented in Figure 2. 
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Figure 2 – Fundamental traffic Diagram 

The diagram was first proposed by Newell in 1964 and was derived by this author in 2012. What 

is noteworthy in this diagram is the downward slope of diagram that is computed to be	− �

��
 . 

Rewriting the equation for flow when � > ��  as 

� = �� = 	�
5280 − ��

����̅
=
5280
���̅

−
��
���̅

 

We define the first term as total capacity	�� !	of the freeway  

�� ! =
5280
���̅

 

And the flow that is not getting through or backing up as  

"# �$%&	'(	 =
��
�̅��

	

Such that the observed flow  

�� )*�%�+ = �� ! − "# �$%&	'( 

And the observed speed will be   

	�� )*�%�+ =
�� )*�%�+

�
 

It is noteworthy that in a situation like NASCAR where �� is measured in milliseconds the 

observed flow will be more than 20,000 vehicles/hour.  

Also we need to mention that for � = ��  there is a residual back up flow of  
,)-�

���̅
 . 
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A plot of backed up flow and manifest flow is presented below (Figure 3) as a function of 

density. 

 

Figure 3 -  

 

The reader may be surprised by the terminology we adopted for which we need to introduce 

the Kinematic Waves Theory of Traffic Flow.  
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Kinematic Waves Model of T

The kinematic waves theory was seminally proposed by Lighthill and Witham (1955) while 

studying the tidal backflow into the mouth of river Thames, and later on independently by 

Roberts in 1956 as a fluid model for traffic flow now known as LW R kinematic waves model. 

The central postulate of the theory 

density such that 

The derivation of the above equation is fa

principles of calculus. Here we will 

regimes of traffic.  

The variation of number of vehicles N in the system between two measuring stations 

upstream and B at downstream 

 

On the other hand we may express N in terms of density

Substituting  

./012
.1

=

 

By Leibniz axiom we may write 

Substituting  

.
.1

Kinematic Waves Model of Traffic Flow 

The kinematic waves theory was seminally proposed by Lighthill and Witham (1955) while 

studying the tidal backflow into the mouth of river Thames, and later on independently by 

as a fluid model for traffic flow now known as LW R kinematic waves model. 

The central postulate of the theory is that there exists a relationship between the flow and the 

3�
34

+ �
3�
31

= 0 

The derivation of the above equation is fairly straight forward through the application

ere we will repeat the derivation and then extend it to cover both flow 

umber of vehicles N in the system between two measuring stations 

 with time may be written as  

./012
.1 � "506, 12  "809, 12 

On the other hand we may express N in terms of density 

/012 � : �04, 12.15
8

 

� .
.1: �04, 12.15

8
� "506, 12  "809, 12 

 as 

: 3
34 "04, 12.4

5

8
 

.
.1: �04, 12.15

8
� : 3

34 "04, 12.4
5

8
 

 

The kinematic waves theory was seminally proposed by Lighthill and Witham (1955) while 

studying the tidal backflow into the mouth of river Thames, and later on independently by 

as a fluid model for traffic flow now known as LW R kinematic waves model. 

a relationship between the flow and the 

the application of first 

to cover both flow 

umber of vehicles N in the system between two measuring stations A at 



10 

 

 

Dropping the integrals, we may write the above as 

3�04, 12
31  3"04, 12

34 � 0 

 

But "04, 12 � �04, 12�0�2 with � itself having dependence on �, i.e., � � �0�04, 122  
 

3�04, 12
31  �0�2 3�04, 1234  �04, 12 3�0�234 � 0 

 

Expanding the last term 

3�04, 12
31  �0�2 3�04, 1234  �04, 12 3�0�23�

3�04, 12
34 � 0 

 

Substituting  

�0�2 � ;<4 =�� , 5280  ��>%?�� 	@ 
And 

3�0�2
3� � ;A� B0, 5280��� C 

Applying the two flow regime concepts  

3�
3� � 0	<�.	� � ��	∀	� < �� 

We end up with a wave equation of the form  

3�04, 12
31  F��G	3�04, 1234 � 0								∀	� < 	��  

Which describes a density wave travelling in forward direction with the speed F��G	 
And as for the case where 
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� � 5280  ��>%?�� 													∀	� > �� 	 
We may write 

3�
31  B5280  ��>%?��  5280

��� �C 3�34 � 0 

Leading to 

3�04, 12
31 + H��Iℎ� K	3�04, 1234 � 0							∀	� > 	�� 

Which describes a wave travelling at speed of L��Iℎ� M	backward, consistent with observations of 

scientists at the Nagoya University in Japan [http://iopscience.iop.org/1367-

2630/15/10/103034/article] 

The appearance of L��Iℎ� M	 unifies the Newell model with LWR fluid model. 

Additionally the use of the backed up flow is justified in our previous discussion. The 

phenomenon is observed daily and has been called the phantom wave by some.  
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Mathematical Solution to Kinematic Waves 

The solution to the Kinematic wave equations introduced in previous chapter is any arbitrary 

function of the form		�04, 12 � 0<4 + N�12. 
However we need to choose our function carefully. Fully knowing that the expected solution is a 

wave, let us try < � N � O
�PQ with a wave length of � + 	 

 

Figure 4 - 

Thus we may write 

�04, 12 = 4
� + 	

+
�1

� + 	
 

Substituting for 	 in terms of density from definition of density  � = ����

�PQ
 , and recognizing the 

product of ��� = �̅� and similarly the product of  
�

��
� = �̅", we write the solution to the first 

and the second differential equation as: 

�4
5280

+
�1
3600

								∀			� < �� 

And 

	
�4
5280

−
"1
3600

			∀			� > ��	 

Where the first term describes the shape density shape and second term describes transport of it. 

The number of vehicles that are accumulated in the backup in the time 1 �� is then 

"1 ��
3600

 

and the time it will take to disperse the accumulated backed up traffic is then  

1&*�(%T��*U) =
"1 ��
/	3600

� 
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where  N is the number of lanes. As expected the time of dispersion is longer than the time of 

accumulation by the factor of �. 

For simulation purposes, the shape may easily be represented by stringing together (with a minus 

sign) several boxcar function ℶ042 represented by the Hebrew letter beth which is a combination 

of  two Heaviside functions representing a single vehicle with its back at location 4 � < and it’s 

front at location 4 � 	N , 

ℶ042 � W04 + <2  W04  N2 
Where  

ℶ042 � 1
2 YZ[�04 + <2  Z[�04  N2\ 

Where Z[� is the sign function defined as 

Z[�042 � 4
|4|								∀	4 ≠ 0 

Then one can make it travel to the right 

ℶ042 =
1
2
YZ[�04 + < − �12 − Z[�04 − N − �12\ 

We have formed a box car function representing 4 vehicles with the density of 30 vehicles per 

mile in Figure 5. 

 

Figure 5 – 

The words shape and  transport may have  come as a surprise to the reader, a brief explanation should clear the matter. Lets 

imagine a ceramic tiled roof line, if it is not moving it can be described as wavy, but  not a wave since the requirement for a  

wave is that it will be moving. Now if the roofline can be made to move it will become a moving wavey shape. Similarly we have 

a string of vehicles with the space in between  arranged  such that a certain density say 30veh/mile is  satisfied, but they are not 

moving yet. To make them  move we need to add the transport term which describes the number of vehicles that get past a point 

per second. For example if � � 360		�Iℎ/ℎ` then a vehicle passes you every 10 seconds and when if � = 1800		�Iℎ/ℎ` then a 

vehicle passes you every 2 seconds. A travelling wave may appear to be stationary, a phenomenon that can be seen by the 

interference of two waves . The matter may become for clear when the reader attempts to simulate the phenomenon for himself 

using standard tools such as an Excel sheet. 
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Practical Traffic Engineering Applications 

The practitioners of traffic engineering are more likely interested to solve ordinary day to day 

traffic engineering problems. Looking at Figure 5 it is easy to imagine how two streams of traffic 

merge with each other as if each vehicle was a tooth on a zipper. We may at this point debunk 

all traffic engineering manuals, books and papers prescribing flow additions and affirm that 

flows are not additive and that only density is additive, while simultaneously take advantage 

of the constancy of τb and provide a new method to compute the state equation for traffic 

flow. 

Although traffic waves travelling forward and backward are interesting as a phenomenon, we 

can take advantage of the constancy of impact time and present a new and comprehensive 

methodology for practitioners of traffic engineering who deal on day to day basis with 

congestion.  

Suppose the traffic undergoes a state change from state c9d with density �  and speed � to 

state c6d with density �#	and speed �#  

If   �# < ��		the	critical	density, then  �# =	�� , however if �# > ��      

Then the inter-vehicular distance for state c9d may be computed as 

	 =
5280 − � �

� 
 

Similarly 

	# =
5280 − �#�

�#
 

�� =
	 
� 

=
	#
�#

 

Eliminating �� from the above equations, we may write 

�# = � 
	�
	O

 

And the flow will be  

�# = �)�# 

We may also take advantage of our findings and solve the equation for merging traffic, as well as 

the added or dropped lanes. See the next section.  
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Merging Traffic 

 

An on-ramp traffic is merged with the outermost lane. Merging occurs at the speed of the 

outermost lane with qr representing on-ramp volume, qO and vO representing volume and 

speed on the outermost freeway lane. 

The density of the outermost lane can be calculated as 

�O =
"O
�O
	 

The inter vehicular distance in the outermost lane is 

	O =
5280 − �O�>%?

�O
 

The density of the ramp is 

�T =
"T
�O
	 

The total density at the merge is then 

��%Tt = �O + �T  

 

When nuvrw > nx one may compute the inter vehicular distance at merging point 

	�%Tt =
5280 − ��%Tt�>%?

��%Tt
	

The speed after merging 

��%Tt = �O
	�%Tt
	O

	 

The flow after merging 

"�%Tt = 0�O + �T2��%Tt = ��%Tt��%Tt 

Similarly the problem of contraction or expansion in the number of lanes may be addressed. 
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Dropped Lane or Lane Convergence and Bottlenecks 

 

Let Nz and N{ represent the number of lanes upstream and downstream for a section of the 

highway. The resulting density after the transition 

�& =
/'
/&

�'			 

Where	n{ and nz are downstream density and upstream density values. 

When �& > �� one may compute the inter vehicular distance at merging point as 

	& =
5280 − �&�>%?

�&
	 

And downstream speed as 

�& = �'
	&
	'

 

Then the downstream flow 

"& = �&�& 			 

The traffic engineering practitioners may be more interested in calculating the time of 

congestion building. The flow rate at any segment in the system is 

� = |"'(�+T% � − "&U})�+T% �~ 

The number of vehicles accumulating per unit time (here in seconds) will be 

/ =
�

3600
			 

The distance accumulated in unit time is then 

.4

.1
= /0� + 	&2 

Substituting the corresponding values 

.4

.1
=
|"'(�+T% � − "&U})�+T% �~0��Iℎ + 	&2

3600
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By definition 

0��Iℎ + 	&2 =
5260
�&

 

Substituting 

.4

.1
=
|"'(�+T% � − "&U})�+T% �~�̅

�&
 

.4

.1
=
�&U})�+T% �|"'(�+T% � − "&U})�+T% �~�̅

"&U})�+T% �
 

Then the distance x at which the upstream space is depleted in time t 

4 =
1
/'

/0�>%? + 	&2 × 1					 

Replacing 0�>%? + 	&2 and N with their equivalents, the rate of depletion of space will be 

proportional to the speed of upstream vehicles and is 

.4

.1
=

�̅
/'
	
0"'(�+T% � − "&U})�+T% �2

�&
=	
�&U})�+T% �|"'(�+T% � − "&U})�+T% �~�̅

/'"&U})�+T% �
	 

The time in seconds for the upstream densities, and speed to equalize with downstream density 

and speed is 

1			 =
3600�/'"&U})�+T% �

	�&U})�+T% �0"'(�+T% � − "&U})�+T% �2
				 

Where X, the segment length, is the distance between the upstream and the downstream 

measurement stations in miles. 

Conversely, when � � "'(�+T% �  "&U})�+T% � is a negative number, it implies a reduction in 

density as a result of net gain in space. 
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Traffic Management and the Inverse Functions 

The practitioners of traffic engineering may be more interested to discover how they can 

influence the outcome of traffic flow through management of access to the on-ramps. To 

accomplish this one needs to predicate on the control of one of the traffic flow variables.  

The traffic engineering practitioner may choose to control the density, flow volume, or the 

queue on the ramp. In the following discussions we have provided a prescription for control of 

these variables via the inverse functions.  

��%Tt% � �T �( + �'(�+T% � 

Substituting for their values 

��%Tt% � "T �(�'(�+T% � + �'(�+T% ��'(�+T% �  

The merge density of the traffic on the main lanes after a flow from the ramp to an	/	 lane 

facility is 

��%Tt% � "T �(/�'(�+T% � + �'(�+T% ��'(�+T% � 																													 
If controlling the density is a goal we utilize the above equation by asserting 	��%Tt% � �tU �  

�tU � � "T �(/�'(�+T% � + �'(�+T% ��'(�+T% � 						 
"T �( � /|�tU ��'(�+T% �  �'(�+T% �~ 

Where / is the number of the main lanes. A negative value describes a flow rate that needs to 

be redirected out of freeway to accomplish the goal. As such predicating on density is not a 

good choice for traffic control since we have no control over the number of vehicles that need 

to be redirected out of the system.  

A better choice to maintain a sustainable flow gradient to optimize travel time is the control of 

flow on the main lanes for a sustainable flow gradient. The derivation is tedious but straight 

forward.  

The speed of the merge may be described by the equation of merge 

��%Tt% � �'(�+T% � 	�%Tt%	'(�+T% � 

We may rewrite the above in terms of respective density 
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��%Tt% � �'(�+T% �
����,B �����

����������P
���������
��������� C�

�����
����������P

���������
���������

����,B������������������ C�
���������
���������

 

And multiplying by  

��%Tt% � "T �(�'(�+T% � + �'(�+T% ��'(�+T% �  

and a bit of algebraic manipulation we arrive at  

��%Tt% � �'(�+T% �  �'(�+T% ��"T �(
/|5280 − �'(�+T% ��~

				 

Where N is the number of main lanes. 

Rewriting the above  

"T �( = /
|5280 − �'(�+T% ��~

�'(�+T% ��
0�'(�+T% � − ��%Tt%2 

"T �( = /
|5280 − �'(�+T% ��~

�'(�+T% ��
0∆�2 

And since the density data is not readily available one may substitute its equivalent in terms of 

measured loop occupancy. In California where 10 ft. detection loops are prevalent the 

conversion factor is 

� = 233.333	��� 

The ramp discharge rate then is 

"T �( = /
|5280 −	213.33���'(�+T% ��~

213.33���'(�+T% ��
0∆�2 

The practitioner may also want to control the queue length on the ramp. 

The queue on the on-ramp has to be controlled for efficient operation of the corridor and to 

minimize the impact of the ramp backup on the local streets. This is achieved by modulating the 

queue build-up rate in response to the rate of arrival �*).  

." = �U'+ − �*) 
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The number of vehicles on the ramp

Where �! is the number of vehicles on the ramp before the start of measurement

Total vehicle length on the ramp

Percentage	�U�� of ramp capacity occupied

�>%

Where Lramp is the total length of all lanes on the ramp.

Equating �! � 0	 and solving for 

of the ramp capacity occupied. 

�
Equating		�U'+ to  "T �( we have the algorithm to sustain a flow gradient with the percentage 

of the occupancy of the ramp capacity as a controlling factor and 

Some ramps may allow storage capacity to exceed physical capacity, in case of separate la

for ramp entrance; others may be r

governed by policies and ramp configuration.

  

ramp at any time t  

."1 � 0�U'+  �*)21 + �! 

is the number of vehicles on the ramp before the start of measurement

ramp 

�>%?0�U'+  �*)21 + �!�>%? 

of ramp capacity occupied 

>%?0�U'+  �*)21 + �!�>%?�T �( � �U�� 

is the total length of all lanes on the ramp. 

olving for  provides the prescription for controlling the percentag

 

�U'+ � �*)  �U���T �(�>%?1 � "T �( 

we have the algorithm to sustain a flow gradient with the percentage 

of the occupancy of the ramp capacity as a controlling factor and its impact at the merge point. 

Some ramps may allow storage capacity to exceed physical capacity, in case of separate la

for ramp entrance; others may be restricted to 60%, for example. This parameter may be 

governed by policies and ramp configuration. 

is the number of vehicles on the ramp before the start of measurement. 

provides the prescription for controlling the percentage 

we have the algorithm to sustain a flow gradient with the percentage 

its impact at the merge point. 

Some ramps may allow storage capacity to exceed physical capacity, in case of separate lanes 

This parameter may be 
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Variable Speed Policy 

 

As of late a few experiments (Georgia DOT and EC) has been conducted in support of 

variable speed limit during the congestion hours.  California is also considering the variable 

speed policy on certain corridors. 

 A quick look at the graph below shows that all �� regardless of the posted speed limit �� 

lie on the  manifest flow (Synchronized flow)  line described by  

 

� � 5280
���̅ 

��
�̅�� 

 

As such the posted speed plays no role in the behavior of synchronized traffic, one may verify 

that when the traffic condition is such that one can only drive at say 10 miles per hour, it would 

not matter whether the sign on the side of the road for speed limit is fixed at 65 MPH or variable 

at 35 MPH 
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Conclusion 

In this paper we have derived all equations needed for complete understanding of traffic flow. 

We have offered a sensible solution to the equation of kinematic waves consistent with both 

the traffic flow diagram and field observation. At the same time we have presented a practical 

method to compute traffic variables for everyday problems that a traffic engineer may 

encounter. We have also provided a comprehensive method to control the flow from the ramp 

to achieve any desired outcome. We have offered a method to estimate the time it takes for a 

traffic jam to clear. Finally, we have offered a universal approach to balance ramp capacity with 

its daily use and computed outflow. As a result we have debunked the commonly accepted 

practice of adding flow rates as is prescribed in current traffic manuals , books and papers, and 

we have shown that the variable speed limit is not of consequence in controlling the freeway 

flow. 

We expect that the application of these innovative approaches would help with the manifest 

gridlock that some urban areas are experiencing. We hope that readers will use the knowledge 

to simulate their local area traffic situation and re-study the effects of applying the appropriate 

ramp rates without the need for calibrating very expensive and time consuming traffic 

simulation software. 

 

 


